Computer Science > Robotics
[Submitted on 26 Jul 2023]
Title:Towards Continuous Time Finite Horizon LQR Control in SE(3)
View PDFAbstract:The control of free-floating robots requires dealing with several challenges. The motion of such robots evolves on a continuous manifold described by the Special Euclidean Group of dimension 3, known as SE(3). Methods from finite horizon Linear Quadratic Regulators (LQR) control have gained recent traction in the robotics community. However, such approaches are inherently solving an unconstrained optimization problem and hence are unable to respect the manifold constraints imposed by the group structure of SE(3). This may lead to small errors, singularity problems and double cover issues depending on the choice of coordinates to model the floating base motion. In this paper, we propose the use of canonical exponential coordinates of SE(3) and the associated Exponential map along with its differentials to embed this structure in the theory of finite horizon LQR controllers.
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.