Computer Science > Social and Information Networks
[Submitted on 21 Jul 2023]
Title:The Looming Threat of Fake and LLM-generated LinkedIn Profiles: Challenges and Opportunities for Detection and Prevention
View PDFAbstract:In this paper, we present a novel method for detecting fake and Large Language Model (LLM)-generated profiles in the LinkedIn Online Social Network immediately upon registration and before establishing connections. Early fake profile identification is crucial to maintaining the platform's integrity since it prevents imposters from acquiring the private and sensitive information of legitimate users and from gaining an opportunity to increase their credibility for future phishing and scamming activities. This work uses textual information provided in LinkedIn profiles and introduces the Section and Subsection Tag Embedding (SSTE) method to enhance the discriminative characteristics of these data for distinguishing between legitimate profiles and those created by imposters manually or by using an LLM. Additionally, the dearth of a large publicly available LinkedIn dataset motivated us to collect 3600 LinkedIn profiles for our research. We will release our dataset publicly for research purposes. This is, to the best of our knowledge, the first large publicly available LinkedIn dataset for fake LinkedIn account detection. Within our paradigm, we assess static and contextualized word embeddings, including GloVe, Flair, BERT, and RoBERTa. We show that the suggested method can distinguish between legitimate and fake profiles with an accuracy of about 95% across all word embeddings. In addition, we show that SSTE has a promising accuracy for identifying LLM-generated profiles, despite the fact that no LLM-generated profiles were employed during the training phase, and can achieve an accuracy of approximately 90% when only 20 LLM-generated profiles are added to the training set. It is a significant finding since the proliferation of several LLMs in the near future makes it extremely challenging to design a single system that can identify profiles created with various LLMs.
Current browse context:
cs.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.