Computer Science > Computers and Society
[Submitted on 13 Jul 2023 (v1), last revised 21 Jul 2023 (this version, v2)]
Title:On the Mechanics of NFT Valuation: AI Ethics and Social Media
View PDFAbstract:As CryptoPunks pioneers the innovation of non-fungible tokens (NFTs) in AI and art, the valuation mechanics of NFTs has become a trending topic. Earlier research identifies the impact of ethics and society on the price prediction of CryptoPunks. Since the booming year of the NFT market in 2021, the discussion of CryptoPunks has propagated on social media. Still, existing literature hasn't considered the social sentiment factors after the historical turning point on NFT valuation. In this paper, we study how sentiments in social media, together with gender and skin tone, contribute to NFT valuations by an empirical analysis of social media, blockchain, and crypto exchange data. We evidence social sentiments as a significant contributor to the price prediction of CryptoPunks. Furthermore, we document structure changes in the valuation mechanics before and after 2021. Although people's attitudes towards Cryptopunks are primarily positive, our findings reflect imbalances in transaction activities and pricing based on gender and skin tone. Our result is consistent and robust, controlling for the rarity of an NFT based on the set of human-readable attributes, including gender and skin tone. Our research contributes to the interdisciplinary study at the intersection of AI, Ethics, and Society, focusing on the ecosystem of decentralized AI or blockchain. We provide our data and code for replicability as open access on GitHub.
Submission history
From: Luyao Zhang [view email][v1] Thu, 13 Jul 2023 03:12:00 UTC (2,151 KB)
[v2] Fri, 21 Jul 2023 10:40:36 UTC (2,151 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.