Computer Science > Computation and Language
[Submitted on 18 Jul 2023]
Title:Attention over pre-trained Sentence Embeddings for Long Document Classification
View PDFAbstract:Despite being the current de-facto models in most NLP tasks, transformers are often limited to short sequences due to their quadratic attention complexity on the number of tokens. Several attempts to address this issue were studied, either by reducing the cost of the self-attention computation or by modeling smaller sequences and combining them through a recurrence mechanism or using a new transformer model. In this paper, we suggest to take advantage of pre-trained sentence transformers to start from semantically meaningful embeddings of the individual sentences, and then combine them through a small attention layer that scales linearly with the document length. We report the results obtained by this simple architecture on three standard document classification datasets. When compared with the current state-of-the-art models using standard fine-tuning, the studied method obtains competitive results (even if there is no clear best model in this configuration). We also showcase that the studied architecture obtains better results when freezing the underlying transformers. A configuration that is useful when we need to avoid complete fine-tuning (e.g. when the same frozen transformer is shared by different applications). Finally, two additional experiments are provided to further evaluate the relevancy of the studied architecture over simpler baselines.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.