Computer Science > Machine Learning
[Submitted on 18 Jul 2023]
Title:Can Neural Network Memorization Be Localized?
View PDFAbstract:Recent efforts at explaining the interplay of memorization and generalization in deep overparametrized networks have posited that neural networks $\textit{memorize}$ "hard" examples in the final few layers of the model. Memorization refers to the ability to correctly predict on $\textit{atypical}$ examples of the training set. In this work, we show that rather than being confined to individual layers, memorization is a phenomenon confined to a small set of neurons in various layers of the model. First, via three experimental sources of converging evidence, we find that most layers are redundant for the memorization of examples and the layers that contribute to example memorization are, in general, not the final layers. The three sources are $\textit{gradient accounting}$ (measuring the contribution to the gradient norms from memorized and clean examples), $\textit{layer rewinding}$ (replacing specific model weights of a converged model with previous training checkpoints), and $\textit{retraining}$ (training rewound layers only on clean examples). Second, we ask a more generic question: can memorization be localized $\textit{anywhere}$ in a model? We discover that memorization is often confined to a small number of neurons or channels (around 5) of the model. Based on these insights we propose a new form of dropout -- $\textit{example-tied dropout}$ that enables us to direct the memorization of examples to an apriori determined set of neurons. By dropping out these neurons, we are able to reduce the accuracy on memorized examples from $100\%\to3\%$, while also reducing the generalization gap.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.