Computer Science > Databases
[Submitted on 18 Jul 2023]
Title:Data sharing and ontology use among agricultural genetics, genomics, and breeding databases and resources of the AgBioData Consortium
View PDFAbstract:Over the last several decades, there has been rapid growth in the number and scope of agricultural genetics, genomics and breeding (GGB) databases and resources. The AgBioData Consortium (this https URL) currently represents 44 databases and resources covering model or crop plant and animal GGB data, ontologies, pathways, genetic variation and breeding platforms (referred to as 'databases' throughout). One of the goals of the Consortium is to facilitate FAIR (Findable, Accessible, Interoperable, and Reusable) data management and the integration of datasets which requires data sharing, along with structured vocabularies and/or ontologies. Two AgBioData working groups, focused on Data Sharing and Ontologies, conducted a survey to assess the status and future needs of the members in those areas. A total of 33 researchers responded to the survey, representing 37 databases. Results suggest that data sharing practices by AgBioData databases are in a healthy state, but it is not clear whether this is true for all metadata and data types across all databases; and that ontology use has not substantially changed since a similar survey was conducted in 2017. We recommend 1) providing training for database personnel in specific data sharing techniques, as well as in ontology use; 2) further study on what metadata is shared, and how well it is shared among databases; 3) promoting an understanding of data sharing and ontologies in the stakeholder community; 4) improving data sharing and ontologies for specific phenotypic data types and formats; and 5) lowering specific barriers to data sharing and ontology use, by identifying sustainability solutions, and the identification, promotion, or development of data standards. Combined, these improvements are likely to help AgBioData databases increase development efforts towards improved ontology use, and data sharing via programmatic means.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.