Computer Science > Data Structures and Algorithms
[Submitted on 17 Jul 2023]
Title:Grammar Boosting: A New Technique for Proving Lower Bounds for Computation over Compressed Data
View PDFAbstract:Grammar compression is a general compression framework in which a string $T$ of length $N$ is represented as a context-free grammar of size $n$ whose language contains only $T$. In this paper, we focus on studying the limitations of algorithms and data structures operating on strings in grammar-compressed form. Previous work focused on proving lower bounds for grammars constructed using algorithms that achieve the approximation ratio $\rho=\mathcal{O}(\text{polylog }N)$. Unfortunately, for the majority of grammar compressors, $\rho$ is either unknown or satisfies $\rho=\omega(\text{polylog }N)$. In their seminal paper, Charikar et al. [IEEE Trans. Inf. Theory 2005] studied seven popular grammar compression algorithms: RePair, Greedy, LongestMatch, Sequential, Bisection, LZ78, and $\alpha$-Balanced. Only one of them ($\alpha$-Balanced) is known to achieve $\rho=\mathcal{O}(\text{polylog }N)$.
We develop the first technique for proving lower bounds for data structures and algorithms on grammars that is fully general and does not depend on the approximation ratio $\rho$ of the used grammar compressor. Using this technique, we first prove that $\Omega(\log N/\log \log N)$ time is required for random access on RePair, Greedy, LongestMatch, Sequential, and Bisection, while $\Omega(\log\log N)$ time is required for random access to LZ78. All these lower bounds hold within space $\mathcal{O}(n\text{ polylog }N)$ and match the existing upper bounds. We also generalize this technique to prove several conditional lower bounds for compressed computation. For example, we prove that unless the Combinatorial $k$-Clique Conjecture fails, there is no combinatorial algorithm for CFG parsing on Bisection (for which it holds $\rho=\tilde{\Theta}(N^{1/2})$) that runs in $\mathcal{O}(n^c\cdot N^{3-\epsilon})$ time for all constants $c>0$ and $\epsilon>0$. Previously, this was known only for $c<2\epsilon$.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.