Mathematics > Numerical Analysis
[Submitted on 14 Jul 2023]
Title:Locking-free HDG methods for Reissner-Mindlin plates equations on polygonal meshes
View PDFAbstract:We present and analyze a new hybridizable discontinuous Galerkin method (HDG) for the Reissner-Mindlin plate bending system. Our method is based on the formulation utilizing Helmholtz Decomposition. Then the system is decomposed into three problems: two trivial Poisson problems and a perturbed saddle-point problem. We apply HDG scheme for these three problems fully. This scheme yields the optimal convergence rate ($(k+1)$th order in the $\mathrm{L}^2$ norm) which is uniform with respect to plate thickness (locking-free) on general meshes. We further analyze the matrix properties and precondition the new finite element system. Numerical experiments are presented to confirm our theoretical analysis.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.