Computer Science > Formal Languages and Automata Theory
[Submitted on 14 Jul 2023 (v1), last revised 31 Oct 2023 (this version, v2)]
Title:Remarks on Parikh-recognizable omega-languages
View PDFAbstract:Several variants of Parikh automata on infinite words were recently introduced by Guha et al. [FSTTCS, 2022]. We show that one of these variants coincides with blind counter machine as introduced by Fernau and Stiebe [Fundamenta Informaticae, 2008]. Fernau and Stiebe showed that every $\omega$-language recognized by a blind counter machine is of the form $\bigcup_iU_iV_i^\omega$ for Parikh recognizable languages $U_i, V_i$, but blind counter machines fall short of characterizing this class of $\omega$-languages. They posed as an open problem to find a suitable automata-based characterization. We introduce several additional variants of Parikh automata on infinite words that yield automata characterizations of classes of $\omega$-language of the form $\bigcup_iU_iV_i^\omega$ for all combinations of languages $U_i, V_i$ being regular or Parikh-recognizable. When both $U_i$ and $V_i$ are regular, this coincides with Büchi's classical theorem. We study the effect of $\varepsilon$-transitions in all variants of Parikh automata and show that almost all of them admit $\varepsilon$-elimination. Finally we study the classical decision problems with applications to model checking.
Submission history
From: Mario Grobler [view email][v1] Fri, 14 Jul 2023 09:21:33 UTC (249 KB)
[v2] Tue, 31 Oct 2023 13:58:38 UTC (132 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.