Computer Science > Information Theory
[Submitted on 9 Jul 2023]
Title:Sharper Asymptotically Optimal CDC Schemes via Combinatorial Designs
View PDFAbstract:Coded distributed computing (CDC) was introduced to greatly reduce the communication load for MapReduce computing systems. Such a system has $K$ nodes, $N$ input files, and $Q$ Reduce functions. Each input file is mapped by $r$ nodes and each Reduce function is computed by $s$ nodes. The architecture must allow for coding techniques that achieve the maximum multicast gain. Some CDC schemes that achieve optimal communication load have been proposed before. The parameters $N$ and $Q$ in those schemes, however, grow too fast with respect to $K$ to be of great practical value. To improve the situation, researchers have come up with some asymptotically optimal cascaded CDC schemes with $s+r=K$ from symmetric designs.
In this paper, we propose new asymptotically optimal cascaded CDC schemes. Akin to known schemes, ours have $r+s=K$ and make use of symmetric designs as construction tools. Unlike previous schemes, ours have much smaller communication loads, given the same set of parameters $K$, $r$, $N$, and $Q$. We also expand the construction tools to include almost difference sets. Using them, we have managed to construct a new asymptotically optimal cascaded CDC scheme.
Submission history
From: Martianus Frederic Ezerman [view email][v1] Sun, 9 Jul 2023 15:44:00 UTC (2,122 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.