Physics > Physics and Society
[Submitted on 5 Jul 2023]
Title:Pattern formation and bifurcation analysis of delay induced fractional-order epidemic spreading on networks
View PDFAbstract:The spontaneous emergence of ordered structures, known as Turing patterns, in complex networks is a phenomenon that holds potential applications across diverse scientific fields, including biology, chemistry, and physics. Here, we present a novel delayed fractional-order susceptible-infected-recovered-susceptible (SIRS) reaction-diffusion model functioning on a network, which is typically used to simulate disease transmission but can also model rumor propagation in social contexts. Our theoretical analysis establishes the Turing instability resulting from delay, and we support our conclusions through numerical experiments. We identify the unique impacts of delay, average network degree, and diffusion rate on pattern formation. The primary outcomes of our study are: (i) Delays cause system instability, mainly evidenced by periodic temporal fluctuations; (ii) The average network degree produces periodic oscillatory states in uneven spatial distributions; (iii) The combined influence of diffusion rate and delay results in irregular oscillations in both time and space. However, we also find that fractional-order can suppress the formation of spatiotemporal patterns. These findings are crucial for comprehending the impact of network structure on the dynamics of fractional-order systems.
Current browse context:
physics.soc-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.