Computer Science > Social and Information Networks
[Submitted on 30 Jun 2023]
Title:DECOR: Degree-Corrected Social Graph Refinement for Fake News Detection
View PDFAbstract:Recent efforts in fake news detection have witnessed a surge of interest in using graph neural networks (GNNs) to exploit rich social context. Existing studies generally leverage fixed graph structures, assuming that the graphs accurately represent the related social engagements. However, edge noise remains a critical challenge in real-world graphs, as training on suboptimal structures can severely limit the expressiveness of GNNs. Despite initial efforts in graph structure learning (GSL), prior works often leverage node features to update edge weights, resulting in heavy computational costs that hinder the methods' applicability to large-scale social graphs. In this work, we approach the fake news detection problem with a novel aspect of social graph refinement. We find that the degrees of news article nodes exhibit distinctive patterns, which are indicative of news veracity. Guided by this, we propose DECOR, a novel application of Degree-Corrected Stochastic Blockmodels to the fake news detection problem. Specifically, we encapsulate our empirical observations into a lightweight social graph refinement component that iteratively updates the edge weights via a learnable degree correction mask, which allows for joint optimization with a GNN-based detector. Extensive experiments on two real-world benchmarks validate the effectiveness and efficiency of DECOR.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.