Computer Science > Software Engineering
[Submitted on 2 Jul 2023 (v1), last revised 8 May 2024 (this version, v3)]
Title:Isolating Compiler Bugs by Generating Effective Witness Programs with Large Language Models
View PDF HTML (experimental)Abstract:Compiler bugs pose a significant threat to safety-critical applications, and promptly as well as effectively isolating these bugs is crucial for assuring the quality of compilers. However, the limited availability of debugging information on reported bugs complicates the compiler bug isolation task. Existing compiler bug isolation approaches convert the problem into a test program mutation problem, but they are still limited by ineffective mutation strategies or high human effort requirements. Drawing inspiration from the recent progress of pre-trained Large Language Models (LLMs), such as ChatGPT, in code generation, we propose a new approach named LLM4CBI to utilize LLMs to generate effective test programs for compiler bug isolation. However, using LLMs directly for test program mutation may not yield the desired results due to the challenges associated with formulating precise prompts and selecting specialized prompts. To overcome the challenges, three new components are designed in LLM4CBI. First, LLM4CBI utilizes a program complexity-guided prompt production component, which leverages data and control flow analysis to identify the most valuable variables and locations in programs for mutation. Second, LLM4CBI employs a memorized prompt selection component, which adopts reinforcement learning to select specialized prompts for mutating test programs continuously. Third, a test program validation component is proposed to select specialized feedback prompts to avoid repeating the same mistakes during the mutation process. Compared with state-of-the-art approaches over 120 real bugs from GCC and LLVM, our evaluation demonstrates the advantages of LLM4CBI: It can isolate 69.70%/21.74% and 24.44%/8.92% more bugs than DiWi and RecBi within Top-1/Top-5 ranked results. We also demonstrate that the LLMs component used in LLM4CBI can be easily replaced while still achieving reasonable results.
Submission history
From: Haoxin Tu - [view email][v1] Sun, 2 Jul 2023 15:20:54 UTC (2,132 KB)
[v2] Tue, 23 Apr 2024 17:24:06 UTC (928 KB)
[v3] Wed, 8 May 2024 08:46:17 UTC (929 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.