Computer Science > Multiagent Systems
[Submitted on 30 Jun 2023 (v1), last revised 3 Jul 2023 (this version, v2)]
Title:Discriminatory or Samaritan -- which AI is needed for humanity? An Evolutionary Game Theory Analysis of Hybrid Human-AI populations
View PDFAbstract:As artificial intelligence (AI) systems are increasingly embedded in our lives, their presence leads to interactions that shape our behaviour, decision-making, and social interactions. Existing theoretical research has primarily focused on human-to-human interactions, overlooking the unique dynamics triggered by the presence of AI. In this paper, resorting to methods from evolutionary game theory, we study how different forms of AI influence the evolution of cooperation in a human population playing the one-shot Prisoner's Dilemma game in both well-mixed and structured populations. We found that Samaritan AI agents that help everyone unconditionally, including defectors, can promote higher levels of cooperation in humans than Discriminatory AI that only help those considered worthy/cooperative, especially in slow-moving societies where change is viewed with caution or resistance (small intensities of selection). Intuitively, in fast-moving societies (high intensities of selection), Discriminatory AIs promote higher levels of cooperation than Samaritan AIs.
Submission history
From: The Anh Han [view email][v1] Fri, 30 Jun 2023 15:56:26 UTC (536 KB)
[v2] Mon, 3 Jul 2023 21:19:28 UTC (1,366 KB)
Current browse context:
cs.MA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.