Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 29 Jun 2023]
Title:The War of the Efficiencies: Understanding the Tension between Carbon and Energy Optimization
View PDFAbstract:Major innovations in computing have been driven by scaling up computing infrastructure, while aggressively optimizing operating costs. The result is a network of worldwide datacenters that consume a large amount of energy, mostly in an energy-efficient manner. Since the electric grid powering these datacenters provided a simple and opaque abstraction of an unlimited and reliable power supply, the computing industry remained largely oblivious to the carbon intensity of the electricity it uses. Much like the rest of the society, it generally treated the carbon intensity of the electricity as constant, which was mostly true for a fossil fuel-driven grid. As a result, the cost-driven objective of increasing energy-efficiency -- by doing more work per unit of energy -- has generally been viewed as the most carbon-efficient approach. However, as the electric grid is increasingly powered by clean energy and is exposing its time-varying carbon intensity, the most energy-efficient operation is no longer necessarily the most carbon-efficient operation. There has been a recent focus on exploiting the flexibility of computing's workloads -- along temporal, spatial, and resource dimensions -- to reduce carbon emissions, which comes at the cost of either performance or energy efficiency. In this paper, we discuss the trade-offs between energy efficiency and carbon efficiency in exploiting computing's flexibility and show that blindly optimizing for energy efficiency is not always the right approach.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.