Computer Science > Robotics
[Submitted on 26 Jun 2023 (v1), last revised 15 Oct 2023 (this version, v2)]
Title:MOVES: Movable and Moving LiDAR Scene Segmentation in Label-Free settings using Static Reconstruction
View PDFAbstract:Accurate static structure reconstruction and segmentation of non-stationary objects is of vital importance for autonomous navigation applications. These applications assume a LiDAR scan to consist of only static structures. In the real world however, LiDAR scans consist of non-stationary dynamic structures - moving and movable objects. Current solutions use segmentation information to isolate and remove moving structures from LiDAR scan. This strategy fails in several important use-cases where segmentation information is not available. In such scenarios, moving objects and objects with high uncertainty in their motion i.e. movable objects, may escape detection. This violates the above assumption. We present MOVES, a novel GAN based adversarial model that segments out moving as well as movable objects in the absence of segmentation information. We achieve this by accurately transforming a dynamic LiDAR scan to its corresponding static scan. This is obtained by replacing dynamic objects and corresponding occlusions with static structures which were occluded by dynamic objects. We leverage corresponding static-dynamic LiDAR pairs.
Submission history
From: Prashant Kumar [view email][v1] Mon, 26 Jun 2023 16:16:46 UTC (5,476 KB)
[v2] Sun, 15 Oct 2023 06:17:12 UTC (7,392 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.