Computer Science > Information Retrieval
[Submitted on 6 Jun 2023 (v1), last revised 6 Aug 2023 (this version, v2)]
Title:Pseudo Session-Based Recommendation with Hierarchical Embedding and Session Attributes
View PDFAbstract:Recently, electronic commerce (EC) websites have been unable to provide an identification number (user ID) for each transaction data entry because of privacy issues. Because most recommendation methods assume that all data are assigned a user ID, they cannot be applied to the data without user IDs. Recently, session-based recommendation (SBR) based on session information, which is short-term behavioral information of users, has been studied. A general SBR uses only information about the item of interest to make a recommendation (e.g., item ID for an EC site). Particularly in the case of EC sites, the data recorded include the name of the item being purchased, the price of the item, the category hierarchy, and the gender and region of the user. In this study, we define a pseudo--session for the purchase history data of an EC site without user IDs and session IDs. Finally, we propose an SBR with a co-guided heterogeneous hypergraph and globalgraph network plus, called CoHHGN+. The results show that our CoHHGN+ can recommend items with higher performance than other methods.
Submission history
From: Yuta Sumiya [view email][v1] Tue, 6 Jun 2023 08:42:56 UTC (2,406 KB)
[v2] Sun, 6 Aug 2023 02:27:05 UTC (689 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.