Computer Science > Social and Information Networks
[Submitted on 15 Jun 2023]
Title:Accelerating Dynamic Network Embedding with Billions of Parameter Updates to Milliseconds
View PDFAbstract:Network embedding, a graph representation learning method illustrating network topology by mapping nodes into lower-dimension vectors, is challenging to accommodate the ever-changing dynamic graphs in practice. Existing research is mainly based on node-by-node embedding modifications, which falls into the dilemma of efficient calculation and accuracy. Observing that the embedding dimensions are usually much smaller than the number of nodes, we break this dilemma with a novel dynamic network embedding paradigm that rotates and scales the axes of embedding space instead of a node-by-node update. Specifically, we propose the Dynamic Adjacency Matrix Factorization (DAMF) algorithm, which achieves an efficient and accurate dynamic network embedding by rotating and scaling the coordinate system where the network embedding resides with no more than the number of edge modifications changes of node embeddings. Moreover, a dynamic Personalized PageRank is applied to the obtained network embeddings to enhance node embeddings and capture higher-order neighbor information dynamically. Experiments of node classification, link prediction, and graph reconstruction on different-sized dynamic graphs suggest that DAMF advances dynamic network embedding. Further, we unprecedentedly expand dynamic network embedding experiments to billion-edge graphs, where DAMF updates billion-level parameters in less than 10ms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.