Computer Science > Software Engineering
[Submitted on 14 Jun 2023]
Title:A statistical approach for finding property-access errors
View PDFAbstract:We study the problem of finding incorrect property accesses in JavaScript where objects do not have a fixed layout, and properties (including methods) can be added, overwritten, and deleted freely throughout the lifetime of an object. Since referencing a non-existent property is not an error in JavaScript, accidental accesses to non-existent properties (caused, perhaps, by a typo or by a misunderstanding of API documentation) can go undetected without thorough testing, and may manifest far from the source of the problem. We propose a two-phase approach for detecting property access errors based on the observation that, in practice, most property accesses will be correct. First a large number of property access patterns is collected from an extensive corpus of real-world JavaScript code, and a statistical analysis is performed to identify anomalous usage patterns. Specific instances of these patterns may not be bugs (due, e.g., dynamic type checks), so a local data-flow analysis filters out instances of anomalous property accesses that are safe and leaves only those likely to be actual bugs. We experimentally validate our approach, showing that on a set of 100 concrete instances of anomalous property accesses, the approach achieves a precision of 82% with a recall of 90%, making it suitable for practical use. We also conducted an experiment to determine how effective the popular VSCode code completion feature is at suggesting object properties, and found that, while it never suggested an incorrect property (precision of 100%), it failed to suggest the correct property in 62 out of 80 cases (recall of 22.5%). This shows that developers cannot rely on VSCode's code completion alone to ensure that all property accesses are valid.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.