Computer Science > Cryptography and Security
[Submitted on 12 Jun 2023 (v1), last revised 26 Apr 2024 (this version, v2)]
Title:Generalized Power Attacks against Crypto Hardware using Long-Range Deep Learning
View PDF HTML (experimental)Abstract:To make cryptographic processors more resilient against side-channel attacks, engineers have developed various countermeasures. However, the effectiveness of these countermeasures is often uncertain, as it depends on the complex interplay between software and hardware. Assessing a countermeasure's effectiveness using profiling techniques or machine learning so far requires significant expertise and effort to be adapted to new targets which makes those assessments expensive. We argue that including cost-effective automated attacks will help chip design teams to quickly evaluate their countermeasures during the development phase, paving the way to more secure chips.
In this paper, we lay the foundations toward such automated system by proposing GPAM, the first deep-learning system for power side-channel analysis that generalizes across multiple cryptographic algorithms, implementations, and side-channel countermeasures without the need for manual tuning or trace preprocessing. We demonstrate GPAM's capability by successfully attacking four hardened hardware-accelerated elliptic-curve digital-signature implementations. We showcase GPAM's ability to generalize across multiple algorithms by attacking a protected AES implementation and achieving comparable performance to state-of-the-art attacks, but without manual trace curation and within a limited budget. We release our data and models as an open-source contribution to allow the community to independently replicate our results and build on them.
Submission history
From: Karel Král [view email][v1] Mon, 12 Jun 2023 17:16:26 UTC (1,814 KB)
[v2] Fri, 26 Apr 2024 13:29:56 UTC (7,379 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.