Computer Science > Computation and Language
[Submitted on 12 Jun 2023 (v1), last revised 13 Jun 2023 (this version, v2)]
Title:LTCR: Long-Text Chinese Rumor Detection Dataset
View PDFAbstract:False information can spread quickly on social media, negatively influencing the citizens' behaviors and responses to social events. To better detect all of the fake news, especially long texts which are harder to find completely, a Long-Text Chinese Rumor detection dataset named LTCR is proposed. The LTCR dataset provides a valuable resource for accurately detecting misinformation, especially in the context of complex fake news related to COVID-19. The dataset consists of 1,729 and 500 pieces of real and fake news, respectively. The average lengths of real and fake news are approximately 230 and 152 characters. We also propose \method, Salience-aware Fake News Detection Model, which achieves the highest accuracy (95.85%), fake news recall (90.91%) and F-score (90.60%) on the dataset. (this https URL)
Submission history
From: Guian Fang [view email][v1] Mon, 12 Jun 2023 16:03:36 UTC (972 KB)
[v2] Tue, 13 Jun 2023 08:08:18 UTC (971 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.