Computer Science > Computer Science and Game Theory
[Submitted on 13 Jun 2023 (v1), last revised 9 Jul 2023 (this version, v2)]
Title:Rethinking Incentives in Recommender Systems: Are Monotone Rewards Always Beneficial?
View PDFAbstract:The past decade has witnessed the flourishing of a new profession as media content creators, who rely on revenue streams from online content recommendation platforms. The reward mechanism employed by these platforms creates a competitive environment among creators which affect their production choices and, consequently, content distribution and system welfare. It is thus crucial to design the platform's reward mechanism in order to steer the creators' competition towards a desirable welfare outcome in the long run. This work makes two major contributions in this regard: first, we uncover a fundamental limit about a class of widely adopted mechanisms, coined Merit-based Monotone Mechanisms, by showing that they inevitably lead to a constant fraction loss of the optimal welfare. To circumvent this limitation, we introduce Backward Rewarding Mechanisms (BRMs) and show that the competition game resultant from BRMs possesses a potential game structure. BRMs thus naturally induce strategic creators' collective behaviors towards optimizing the potential function, which can be designed to match any given welfare metric. In addition, the BRM class can be parameterized to allow the platform to directly optimize welfare within the feasible mechanism space even when the welfare metric is not explicitly defined.
Submission history
From: Fan Yao [view email][v1] Tue, 13 Jun 2023 16:38:47 UTC (944 KB)
[v2] Sun, 9 Jul 2023 17:30:23 UTC (1,342 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.