Computer Science > Human-Computer Interaction
[Submitted on 7 Jun 2023]
Title:Enhancing Virtual Assistant Intelligence: Precise Area Targeting for Instance-level User Intents beyond Metadata
View PDFAbstract:Virtual assistants have been widely used by mobile phone users in recent years. Although their capabilities of processing user intents have been developed rapidly, virtual assistants in most platforms are only capable of handling pre-defined high-level tasks supported by extra manual efforts of developers. However, instance-level user intents containing more detailed objectives with complex practical situations, are yet rarely studied so far. In this paper, we explore virtual assistants capable of processing instance-level user intents based on pixels of application screens, without the requirements of extra extensions on the application side. We propose a novel cross-modal deep learning pipeline, which understands the input vocal or textual instance-level user intents, predicts the targeting operational area, and detects the absolute button area on screens without any metadata of applications. We conducted a user study with 10 participants to collect a testing dataset with instance-level user intents. The testing dataset is then utilized to evaluate the performance of our model, which demonstrates that our model is promising with the achievement of 64.43% accuracy on our testing dataset.
Current browse context:
cs.HC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
Connected Papers (What is Connected Papers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.