Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 8 Jun 2023 (v1), last revised 20 Nov 2023 (this version, v4)]
Title:Convolutional Recurrent Neural Network with Attention for 3D Speech Enhancement
View PDFAbstract:3D speech enhancement can effectively improve the auditory experience and plays a crucial role in augmented reality technology. However, traditional convolutional-based speech enhancement methods have limitations in extracting dynamic voice information. In this paper, we incorporate a dual-path recurrent neural network block into the U-Net to iteratively extract dynamic audio information in both the time and frequency domains. And an attention mechanism is proposed to fuse the original signal, reference signal, and generated masks. Moreover, we introduce a loss function to simultaneously optimize the network in the time-frequency and time domains. Experimental results show that our system outperforms the state-of-the-art systems on the dataset of ICASSP L3DAS23 challenge.
Submission history
From: Han Yin [view email][v1] Thu, 8 Jun 2023 07:19:14 UTC (5,311 KB)
[v2] Tue, 4 Jul 2023 03:06:00 UTC (5,476 KB)
[v3] Sat, 30 Sep 2023 04:41:21 UTC (5,476 KB)
[v4] Mon, 20 Nov 2023 03:00:20 UTC (5,476 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.