Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 5 Jun 2023 (v1), last revised 6 Jun 2023 (this version, v2)]
Title:AI Techniques for Cone Beam Computed Tomography in Dentistry: Trends and Practices
View PDFAbstract:Cone-beam computed tomography (CBCT) is a popular imaging modality in dentistry for diagnosing and planning treatment for a variety of oral diseases with the ability to produce detailed, three-dimensional images of the teeth, jawbones, and surrounding structures. CBCT imaging has emerged as an essential diagnostic tool in dentistry. CBCT imaging has seen significant improvements in terms of its diagnostic value, as well as its accuracy and efficiency, with the most recent development of artificial intelligence (AI) techniques. This paper reviews recent AI trends and practices in dental CBCT imaging. AI has been used for lesion detection, malocclusion classification, measurement of buccal bone thickness, and classification and segmentation of teeth, alveolar bones, mandibles, landmarks, contours, and pharyngeal airways using CBCT images. Mainly machine learning algorithms, deep learning algorithms, and super-resolution techniques are used for these tasks. This review focuses on the potential of AI techniques to transform CBCT imaging in dentistry, which would improve both diagnosis and treatment planning. Finally, we discuss the challenges and limitations of artificial intelligence in dentistry and CBCT imaging.
Submission history
From: Saba Sarwar [view email][v1] Mon, 5 Jun 2023 16:45:39 UTC (1,747 KB)
[v2] Tue, 6 Jun 2023 19:11:24 UTC (1,747 KB)
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.