Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Jun 2023 (v1), last revised 2 Mar 2024 (this version, v4)]
Title:GCD-DDPM: A Generative Change Detection Model Based on Difference-Feature Guided DDPM
View PDF HTML (experimental)Abstract:Deep learning (DL)-based methods have recently shown great promise in bitemporal change detection (CD). Existing discriminative methods based on Convolutional Neural Networks (CNNs) and Transformers rely on discriminative representation learning for change recognition while struggling with exploring local and long-range contextual dependencies. As a result, it is still challenging to obtain fine-grained and robust CD maps in diverse ground scenes. To cope with this challenge, this work proposes a generative change detection model called GCD-DDPM to directly generate CD maps by exploiting the Denoising Diffusion Probabilistic Model (DDPM), instead of classifying each pixel into changed or unchanged categories. Furthermore, the Difference Conditional Encoder (DCE), is designed to guide the generation of CD maps by exploiting multi-level difference features. Leveraging the variational inference (VI) procedure, GCD-DDPM can adaptively re-calibrate the CD results through an iterative inference process, while accurately distinguishing subtle and irregular changes in diverse scenes. Finally, a Noise Suppression-based Semantic Enhancer (NSSE) is specifically designed to mitigate noise in the current step's change-aware feature representations from the CD Encoder. This refinement, serving as an attention map, can guide subsequent iterations while enhancing CD accuracy. Extensive experiments on four high-resolution CD datasets confirm the superior performance of the proposed GCD-DDPM. The code for this work will be available at this https URL.
Submission history
From: Wendi Liang [view email][v1] Tue, 6 Jun 2023 05:51:50 UTC (8,763 KB)
[v2] Sat, 17 Jun 2023 11:47:54 UTC (14,283 KB)
[v3] Wed, 6 Sep 2023 04:36:33 UTC (4,461 KB)
[v4] Sat, 2 Mar 2024 13:37:25 UTC (9,479 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.