Computer Science > Information Retrieval
[Submitted on 2 Jun 2023 (v1), last revised 20 Dec 2023 (this version, v2)]
Title:Self Contrastive Learning for Session-based Recommendation
View PDFAbstract:Session-based recommendation, which aims to predict the next item of users' interest as per an existing sequence interaction of items, has attracted growing applications of Contrastive Learning (CL) with improved user and item representations. However, these contrastive objectives: (1) serve a similar role as the cross-entropy loss while ignoring the item representation space optimisation; and (2) commonly require complicated modelling, including complex positive/negative sample constructions and extra data augmentation. In this work, we introduce Self-Contrastive Learning (SCL), which simplifies the application of CL and enhances the performance of state-of-the-art CL-based recommendation techniques. Specifically, SCL is formulated as an objective function that directly promotes a uniform distribution among item representations and efficiently replaces all the existing contrastive objective components of state-of-the-art models. Unlike previous works, SCL eliminates the need for any positive/negative sample construction or data augmentation, leading to enhanced interpretability of the item representation space and facilitating its extensibility to existing recommender systems. Through experiments on three benchmark datasets, we demonstrate that SCL consistently improves the performance of state-of-the-art models with statistical significance. Notably, our experiments show that SCL improves the performance of two best-performing models by 8.2% and 9.5% in P@10 (Precision) and 9.9% and 11.2% in MRR@10 (Mean Reciprocal Rank) on average across different benchmarks. Additionally, our analysis elucidates the improvement in terms of alignment and uniformity of representations, as well as the effectiveness of SCL with a low computational cost.
Submission history
From: Zhengxiang Shi [view email][v1] Fri, 2 Jun 2023 04:43:21 UTC (864 KB)
[v2] Wed, 20 Dec 2023 17:01:04 UTC (776 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.