Mathematics > Numerical Analysis
[Submitted on 31 May 2023 (v1), last revised 7 Jul 2024 (this version, v2)]
Title:Parametric Shape Holomorphy of Boundary Integral Operators with Applications
View PDF HTML (experimental)Abstract:We consider a family of boundary integral operators supported on a collection of parametrically defined bounded Lipschitz boundaries. Consequently, the boundary integral operators themselves also depend on the parametric variables, thus leading to a parameter-to-operator map. The main result of this article is to establish the analytic or holomorphic dependence of said boundary integral operators upon the parametric variables, i.e., of the parameter-to-operator map. As a direct consequence we also establish holomorphic dependence of solutions to boundary integral equations, i.e.,~holomorphy of the parameter-to-solution map. To this end, we construct a holomorphic extension to complex-valued boundary deformations and investigate the \emph{complex} Fréchet differentiability of boundary integral operators with respect to each parametric variable. The established parametric holomorphy results have been identified as a key property to overcome the so-called curse of dimensionality in the approximation of parametric maps with distributed, high-dimensional inputs.
To demonstrate the applicability of the derived results, we consider as a concrete example the sound-soft Helmholtz acoustic scattering problem and its frequency-robust boundary integral formulations. For this particular application, we explore the consequences of our results in reduced order modelling, Bayesian shape inversion, and the construction of efficient surrogates using artificial neural networks.
Submission history
From: Fernando Henriquez [view email][v1] Wed, 31 May 2023 13:42:48 UTC (60 KB)
[v2] Sun, 7 Jul 2024 15:27:55 UTC (4,434 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.