Computer Science > Information Retrieval
[Submitted on 24 May 2023 (v1), last revised 1 Nov 2023 (this version, v2)]
Title:Ranking with Popularity Bias: User Welfare under Self-Amplification Dynamics
View PDFAbstract:While popularity bias is recognized to play a crucial role in recommmender (and other ranking-based) systems, detailed analysis of its impact on collective user welfare has largely been lacking. We propose and theoretically analyze a general mechanism, rooted in many of the models proposed in the literature, by which item popularity, item quality, and position bias jointly impact user choice. We focus on a standard setting in which user utility is largely driven by item quality, and a recommender attempts to estimate it given user behavior. Formulating the problem as a non-stationary contextual bandit, we study the ability of a recommender policy to maximize user welfare under this model. We highlight the importance of exploration, not to eliminate popularity bias, but to mitigate its negative impact on welfare. We first show that naive popularity-biased recommenders induce linear regret by conflating item quality and popularity. More generally, we show that, even in linear settings, identifiability of item quality may not be possible due to the confounding effects of popularity bias. However, under sufficient variability assumptions, we develop an efficient optimistic algorithm and prove efficient regret guarantees w.r.t. user welfare. We complement our analysis with several simulation studies, which demonstrate the negative impact of popularity bias on the performance of several natural recommender policies.
Submission history
From: Guy Tennenholtz [view email][v1] Wed, 24 May 2023 22:38:19 UTC (524 KB)
[v2] Wed, 1 Nov 2023 21:08:01 UTC (632 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.