Mathematics > Optimization and Control
[Submitted on 26 May 2023 (v1), last revised 28 Feb 2024 (this version, v2)]
Title:Fast and Accurate Estimation of Low-Rank Matrices from Noisy Measurements via Preconditioned Non-Convex Gradient Descent
View PDF HTML (experimental)Abstract:Non-convex gradient descent is a common approach for estimating a low-rank $n\times n$ ground truth matrix from noisy measurements, because it has per-iteration costs as low as $O(n)$ time, and is in theory capable of converging to a minimax optimal estimate. However, the practitioner is often constrained to just tens to hundreds of iterations, and the slow and/or inconsistent convergence of non-convex gradient descent can prevent a high-quality estimate from being obtained. Recently, the technique of preconditioning was shown to be highly effective at accelerating the local convergence of non-convex gradient descent when the measurements are noiseless. In this paper, we describe how preconditioning should be done for noisy measurements to accelerate local convergence to minimax optimality. For the symmetric matrix sensing problem, our proposed preconditioned method is guaranteed to locally converge to minimax error at a linear rate that is immune to ill-conditioning and/or over-parameterization. Using our proposed preconditioned method, we perform a 60 megapixel medical image denoising task, and observe significantly reduced noise levels compared to previous approaches.
Submission history
From: Jialun Zhang [view email][v1] Fri, 26 May 2023 19:32:07 UTC (2,498 KB)
[v2] Wed, 28 Feb 2024 04:14:13 UTC (8,874 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.