Condensed Matter > Materials Science
[Submitted on 24 May 2023 (v1), last revised 2 Nov 2023 (this version, v2)]
Title:Detection of Non-uniformity in Parameters for Magnetic Domain Pattern Generation by Machine Learning
View PDFAbstract:We estimate the spatial distribution of heterogeneous physical parameters involved in the formation of magnetic domain patterns of polycrystalline thin films by using convolutional neural networks. We propose a method to obtain a spatial map of physical parameters by estimating the parameters from patterns within a small subregion window of the full magnetic domain and subsequently shifting this window. To enhance the accuracy of parameter estimation in such subregions, we employ large-scale models utilized for natural image classification and exploit the benefits of pretraining. Using a model with high estimation accuracy on these subregions, we conduct inference on simulation data featuring spatially varying parameters and demonstrate the capability to detect such parameter variations.
Submission history
From: Naoya Mamada [view email][v1] Wed, 24 May 2023 06:15:27 UTC (2,615 KB)
[v2] Thu, 2 Nov 2023 04:20:37 UTC (3,784 KB)
Current browse context:
cond-mat.mtrl-sci
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.