Computer Science > Neural and Evolutionary Computing
[Submitted on 23 May 2023 (v1), last revised 21 Apr 2024 (this version, v2)]
Title:Toward stochastic neural computing
View PDF HTML (experimental)Abstract:The highly irregular spiking activity of cortical neurons and behavioral variability suggest that the brain could operate in a fundamentally probabilistic way. Mimicking how the brain implements and learns probabilistic computation could be a key to developing machine intelligence that can think more like humans. In this work, we propose a theory of stochastic neural computing (SNC) in which streams of noisy inputs are transformed and processed through populations of nonlinearly coupled spiking neurons. To account for the propagation of correlated neural variability, we derive from first principles a moment embedding for spiking neural network (SNN). This leads to a new class of deep learning model called the moment neural network (MNN) which naturally generalizes rate-based neural networks to second order. As the MNN faithfully captures the stationary statistics of spiking neural activity, it can serve as a powerful proxy for training SNN with zero free parameters. Through joint manipulation of mean firing rate and noise correlations in a task-driven way, the model is able to learn inference tasks while simultaneously minimizing prediction uncertainty, resulting in enhanced inference speed. We further demonstrate the application of our method to Intel's Loihi neuromorphic hardware. The proposed theory of SNC may open up new opportunities for developing machine intelligence capable of computing uncertainty and for designing unconventional computing architectures.
Submission history
From: Yang Qi [view email][v1] Tue, 23 May 2023 12:05:35 UTC (989 KB)
[v2] Sun, 21 Apr 2024 05:35:17 UTC (1,211 KB)
Current browse context:
cs.NE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.