Computer Science > Computation and Language
[Submitted on 23 May 2023 (v1), last revised 23 Oct 2023 (this version, v2)]
Title:Challenges in Context-Aware Neural Machine Translation
View PDFAbstract:Context-aware neural machine translation involves leveraging information beyond sentence-level context to resolve inter-sentential discourse dependencies and improve document-level translation quality, and has given rise to a number of recent techniques. However, despite well-reasoned intuitions, most context-aware translation models show only modest improvements over sentence-level systems. In this work, we investigate several challenges that impede progress within this field, relating to discourse phenomena, context usage, model architectures, and document-level evaluation. To address these problems, we propose a more realistic setting for document-level translation, called paragraph-to-paragraph (para2para) translation, and collect a new dataset of Chinese-English novels to promote future research.
Submission history
From: Linghao Jin [view email][v1] Tue, 23 May 2023 07:08:18 UTC (7,990 KB)
[v2] Mon, 23 Oct 2023 21:01:26 UTC (7,924 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.