Computer Science > Machine Learning
[Submitted on 17 May 2023 (v1), last revised 17 Nov 2023 (this version, v2)]
Title:How does Contrastive Learning Organize Images?
View PDFAbstract:Contrastive learning, a dominant self-supervised technique, emphasizes similarity in representations between augmentations of the same input and dissimilarity for different ones. Although low contrastive loss often correlates with high classification accuracy, recent studies challenge this direct relationship, spotlighting the crucial role of inductive biases. We delve into these biases from a clustering viewpoint, noting that contrastive learning creates locally dense clusters, contrasting the globally dense clusters from supervised learning. To capture this discrepancy, we introduce the "RLD (Relative Local Density)" metric. While this cluster property can hinder linear classification accuracy, leveraging a Graph Convolutional Network (GCN) based classifier mitigates this, boosting accuracy and reducing parameter requirements. The code is available \href{this https URL}{here}.
Submission history
From: Yunzhe Zhang [view email][v1] Wed, 17 May 2023 14:10:54 UTC (20,532 KB)
[v2] Fri, 17 Nov 2023 19:34:39 UTC (29,735 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.