Computer Science > Machine Learning
[Submitted on 18 May 2023 (v1), last revised 23 Aug 2024 (this version, v2)]
Title:MetaGAD: Meta Representation Adaptation for Few-Shot Graph Anomaly Detection
View PDF HTML (experimental)Abstract:Graph anomaly detection has long been an important problem in various domains pertaining to information security such as financial fraud, social spam and network intrusion. The majority of existing methods are performed in an unsupervised manner, as labeled anomalies in a large scale are often too expensive to acquire. However, the identified anomalies may turn out to be uninteresting data instances due to the lack of prior knowledge. In real-world scenarios, it is often feasible to obtain limited labeled anomalies, which have great potential to advance graph anomaly detection. However, the work exploring limited labeled anomalies and a large amount of unlabeled nodes in graphs to detect anomalies is relatively limited. Therefore, in this paper, we study an important problem of few-shot graph anomaly detection. Nonetheless, it is challenging to fully leverage the information of few-shot anomalous nodes due to the irregularity of anomalies and the overfitting issue in the few-shot learning. To tackle the above challenges, we propose a novel meta-learning based framework, MetaGAD, that learns to adapt the knowledge from self-supervised learning to few-shot supervised learning for graph anomaly detection. In specific, we formulate the problem as a bi-level optimization, ensuring MetaGAD converging to minimizing the validation loss, thus enhancing the generalization capacity. The comprehensive experiments on six real-world datasets with synthetic anomalies and "organic" anomalies (available in the datasets) demonstrate the effectiveness of MetaGAD in detecting anomalies with few-shot anomalies. The code is available at this https URL.
Submission history
From: Xiongxiao Xu [view email][v1] Thu, 18 May 2023 03:04:51 UTC (272 KB)
[v2] Fri, 23 Aug 2024 19:31:31 UTC (323 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.