Computer Science > Computer Vision and Pattern Recognition
[Submitted on 17 May 2023]
Title:An Interactively Reinforced Paradigm for Joint Infrared-Visible Image Fusion and Saliency Object Detection
View PDFAbstract:This research focuses on the discovery and localization of hidden objects in the wild and serves unmanned systems. Through empirical analysis, infrared and visible image fusion (IVIF) enables hard-to-find objects apparent, whereas multimodal salient object detection (SOD) accurately delineates the precise spatial location of objects within the picture. Their common characteristic of seeking complementary cues from different source images motivates us to explore the collaborative relationship between Fusion and Salient object detection tasks on infrared and visible images via an Interactively Reinforced multi-task paradigm for the first time, termed IRFS. To the seamless bridge of multimodal image fusion and SOD tasks, we specifically develop a Feature Screening-based Fusion subnetwork (FSFNet) to screen out interfering features from source images, thereby preserving saliency-related features. After generating the fused image through FSFNet, it is then fed into the subsequent Fusion-Guided Cross-Complementary SOD subnetwork (FC$^2$Net) as the third modality to drive the precise prediction of the saliency map by leveraging the complementary information derived from the fused image. In addition, we develop an interactive loop learning strategy to achieve the mutual reinforcement of IVIF and SOD tasks with a shorter training period and fewer network parameters. Comprehensive experiment results demonstrate that the seamless bridge of IVIF and SOD mutually enhances their performance, and highlights their superiority.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.