Electrical Engineering and Systems Science > Systems and Control
[Submitted on 16 May 2023]
Title:Distributionally Robust Differential Dynamic Programming with Wasserstein Distance
View PDFAbstract:Differential dynamic programming (DDP) is a popular technique for solving nonlinear optimal control problems with locally quadratic approximations. However, existing DDP methods are not designed for stochastic systems with unknown disturbance distributions. To address this limitation, we propose a novel DDP method that approximately solves the Wasserstein distributionally robust control (WDRC) problem, where the true disturbance distribution is unknown but a disturbance sample dataset is given. Our approach aims to develop a practical and computationally efficient DDP solution. To achieve this, we use the Kantrovich duality principle to decompose the value function in a novel way and derive closed-form expressions of the distributionally robust control and worst-case distribution policies to be used in each iteration of our DDP algorithm. This characterization makes our method tractable and scalable without the need for numerically solving any minimax optimization problems. The superior out-of-sample performance and scalability of our algorithm are demonstrated through kinematic car navigation and coupled oscillator problems.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.