Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 May 2023 (v1), last revised 17 Aug 2023 (this version, v2)]
Title:Ray-Patch: An Efficient Querying for Light Field Transformers
View PDFAbstract:In this paper we propose the Ray-Patch querying, a novel model to efficiently query transformers to decode implicit representations into target views. Our Ray-Patch decoding reduces the computational footprint and increases inference speed up to one order of magnitude compared to previous models, without losing global attention, and hence maintaining specific task metrics. The key idea of our novel querying is to split the target image into a set of patches, then querying the transformer for each patch to extract a set of feature vectors, which are finally decoded into the target image using convolutional layers. Our experimental results, implementing Ray-Patch in 3 different architectures and evaluating it in 2 different tasks and datasets, demonstrate and quantify the effectiveness of our method, specifically a notable boost in rendering speed for the same task metrics.
Submission history
From: Tomas Berriel Martins [view email][v1] Tue, 16 May 2023 16:03:27 UTC (24,600 KB)
[v2] Thu, 17 Aug 2023 09:39:05 UTC (27,216 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.