Computer Science > Computation and Language
[Submitted on 16 May 2023]
Title:About Evaluation of F1 Score for RECENT Relation Extraction System
View PDFAbstract:This document contains a discussion of the F1 score evaluation used in the article 'Relation Classification with Entity Type Restriction' by Shengfei Lyu, Huanhuan Chen published on Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. The authors created a system named RECENT and claim it achieves (then) a new state-of-the-art result 75.2 (previous 74.8) on the TACRED dataset, while after correcting errors and reevaluation the final result is 65.16
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.