Computer Science > Formal Languages and Automata Theory
[Submitted on 15 May 2023 (v1), last revised 2 Aug 2023 (this version, v2)]
Title:Separating Automatic Relations
View PDFAbstract:We study the separability problem for automatic relations (i.e., relations on finite words definable by synchronous automata) in terms of recognizable relations (i.e., finite unions of products of regular languages). This problem takes as input two automatic relations $R$ and $R'$, and asks if there exists a recognizable relation $S$ that contains $R$ and does not intersect $R'$. We show this problem to be undecidable when the number of products allowed in the recognizable relation is fixed. In particular, checking if there exists a recognizable relation $S$ with at most $k$ products of regular languages that separates $R$ from $R'$ is undecidable, for each fixed $k \geq 2$. Our proofs reveal tight connections, of independent interest, between the separability problem and the finite coloring problem for automatic graphs, where colors are regular languages.
Submission history
From: Rémi Morvan [view email][v1] Mon, 15 May 2023 15:41:53 UTC (250 KB)
[v2] Wed, 2 Aug 2023 09:38:12 UTC (250 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.