Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 May 2023 (v1), last revised 5 Jun 2023 (this version, v4)]
Title:Semantic Embedded Deep Neural Network: A Generic Approach to Boost Multi-Label Image Classification Performance
View PDFAbstract:Fine-grained multi-label classification models have broad applications in e-commerce, such as visual based label predictions ranging from fashion attribute detection to brand recognition. One challenge to achieve satisfactory performance for those classification tasks in real world is the wild visual background signal that contains irrelevant pixels which confuses model to focus onto the region of interest and make prediction upon the specific region. In this paper, we introduce a generic semantic-embedding deep neural network to apply the spatial awareness semantic feature incorporating a channel-wise attention based model to leverage the localization guidance to boost model performance for multi-label prediction. We observed an this http URL improvement of 15.27% in terms of AUC score across all labels compared to the baseline approach. Core experiment and ablation studies involve multi-label fashion attribute classification performed on Instagram fashion apparels' image. We compared the model performances among our approach, baseline approach, and 3 alternative approaches to leverage semantic features. Results show favorable performance for our approach.
Submission history
From: Xin Shen [view email][v1] Tue, 9 May 2023 07:44:52 UTC (5,240 KB)
[v2] Mon, 15 May 2023 21:06:17 UTC (5,240 KB)
[v3] Sat, 27 May 2023 22:01:35 UTC (5,240 KB)
[v4] Mon, 5 Jun 2023 21:30:25 UTC (5,241 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.