Electrical Engineering and Systems Science > Systems and Control
[Submitted on 8 May 2023 (v1), last revised 25 Oct 2023 (this version, v3)]
Title:Robust Power Allocation for UAV-aided ISAC Systems with Uncertain Location Sensing Errors
View PDFAbstract:Unmanned aerial vehicle (UAV) holds immense potential in integrated sensing and communication (ISAC) systems for the Internet of Things (IoT). In this paper, we propose a UAV-aided ISAC framework and investigate three robust power allocation schemes. First, we derive an explicit expression of the Cramér-Rao bound (CRB) based on time-of-arrival (ToA) estimation, which serves as the performance metric for location sensing. Then, we analyze the impact of the location sensing error (LSE) on communications, revealing the inherent coupling relationship between communication and sensing. Moreover, we formulate three robust communication and sensing power allocation problems by respectively characterizing the LSE as an ellipsoidal distributed model, a Gaussian distributed model, and an arbitrary distributed model. Notably, the optimization problems seek to minimize the CRB, subject to data rate and total power constraints. However, these problems are non-convex and intractable. To address the challenges related to the three aforementioned LSE models, we respectively propose to use the ${\cal{S}}$-Procedure and alternating optimization (${\cal{S}}$-AO) method, Bernstein-type inequality and successive convex approximation (BI-SCA) method, and conditional value-at-risk (CVaR) and AO (CVaR-AO) method to solve these problems. Finally, simulation results demonstrate the robustness of our proposed UAV-aided ISAC system against the LSE by comparing with the non-robust design, and evaluate the trade-off between communication and sensing in the ISAC system.
Submission history
From: Junchang Sun [view email][v1] Mon, 8 May 2023 02:30:47 UTC (3,402 KB)
[v2] Tue, 8 Aug 2023 09:11:30 UTC (3,414 KB)
[v3] Wed, 25 Oct 2023 01:29:41 UTC (2,589 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.