Computer Science > Computation and Language
[Submitted on 26 Apr 2023 (v1), last revised 5 Feb 2024 (this version, v2)]
Title:The Parrot Dilemma: Human-Labeled vs. LLM-augmented Data in Classification Tasks
View PDFAbstract:In the realm of Computational Social Science (CSS), practitioners often navigate complex, low-resource domains and face the costly and time-intensive challenges of acquiring and annotating data. We aim to establish a set of guidelines to address such challenges, comparing the use of human-labeled data with synthetically generated data from GPT-4 and Llama-2 in ten distinct CSS classification tasks of varying complexity. Additionally, we examine the impact of training data sizes on performance. Our findings reveal that models trained on human-labeled data consistently exhibit superior or comparable performance compared to their synthetically augmented counterparts. Nevertheless, synthetic augmentation proves beneficial, particularly in improving performance on rare classes within multi-class tasks. Furthermore, we leverage GPT-4 and Llama-2 for zero-shot classification and find that, while they generally display strong performance, they often fall short when compared to specialized classifiers trained on moderately sized training sets.
Submission history
From: Luca Maria Aiello [view email][v1] Wed, 26 Apr 2023 23:09:02 UTC (12,428 KB)
[v2] Mon, 5 Feb 2024 14:41:35 UTC (2,048 KB)
Current browse context:
cs.CL
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.