Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 19 Apr 2023 (v1), last revised 11 Aug 2023 (this version, v3)]
Title:Massive Data-Centric Parallelism in the Chiplet Era
View PDFAbstract:Recent works have introduced task-based parallelization schemes to accelerate graph search and sparse data-structure traversal, where some solutions scale up to thousands of processing units (PUs) on a single chip. However parallelizing these memory-intensive workloads across millions of cores requires a scalable communication scheme as well as designing a cost-efficient computing node that makes multi-node systems practical, which have not been addressed in previous research. To address these challenges, we propose a task-oriented scalable chiplet architecture for distributed execution (Tascade), a multi-node system design that we evaluate with up to 256 distributed chips -- over a million PUs. We introduce an execution model that scales to this level via proxy regions and selective cascading, which reduce overall communication and improve load balancing. In addition, package-time reconfiguration of our chiplet-based design enables creating chip products that optimized post-silicon for different target metrics, such as time-to-solution, energy, or cost. We evaluate six applications and four datasets, with several configurations and memory technologies to provide a detailed analysis of the performance, power, and cost of data-centric execution at a massive scale. Our parallelization of Breadth-First-Search with RMAT-26 across a million PUs -- the largest of the literature -- reaches 3021 GTEPS.
Submission history
From: Marcelo Orenes-Vera [view email][v1] Wed, 19 Apr 2023 02:58:08 UTC (12,257 KB)
[v2] Tue, 16 May 2023 23:19:45 UTC (17,405 KB)
[v3] Fri, 11 Aug 2023 07:57:37 UTC (18,883 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.