Computer Science > Machine Learning
[Submitted on 14 Apr 2023]
Title:Learning to Defer with Limited Expert Predictions
View PDFAbstract:Recent research suggests that combining AI models with a human expert can exceed the performance of either alone. The combination of their capabilities is often realized by learning to defer algorithms that enable the AI to learn to decide whether to make a prediction for a particular instance or defer it to the human expert. However, to accurately learn which instances should be deferred to the human expert, a large number of expert predictions that accurately reflect the expert's capabilities are required -- in addition to the ground truth labels needed to train the AI. This requirement shared by many learning to defer algorithms hinders their adoption in scenarios where the responsible expert regularly changes or where acquiring a sufficient number of expert predictions is costly. In this paper, we propose a three-step approach to reduce the number of expert predictions required to train learning to defer algorithms. It encompasses (1) the training of an embedding model with ground truth labels to generate feature representations that serve as a basis for (2) the training of an expertise predictor model to approximate the expert's capabilities. (3) The expertise predictor generates artificial expert predictions for instances not yet labeled by the expert, which are required by the learning to defer algorithms. We evaluate our approach on two public datasets. One with "synthetically" generated human experts and another from the medical domain containing real-world radiologists' predictions. Our experiments show that the approach allows the training of various learning to defer algorithms with a minimal number of human expert predictions. Furthermore, we demonstrate that even a small number of expert predictions per class is sufficient for these algorithms to exceed the performance the AI and the human expert can achieve individually.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.