Electrical Engineering and Systems Science > Systems and Control
[Submitted on 17 Apr 2023]
Title:Novel Quality Measure and Efficient Resolution of Convex Hull Pricing for Unit Commitment
View PDFAbstract:Electricity prices determined by economic dispatch that do not consider fixed costs may lead to significant uplift payments. However, when fixed costs are included, prices become non-monotonic with respect to demand, which can adversely impact market transparency. To overcome this issue, convex hull (CH) pricing has been introduced for unit commitment with fixed costs. Several CH pricing methods have been presented, and a feasible cost has been used as a quality measure for the CH price. However, obtaining a feasible cost requires a computationally intensive optimization procedure, and the associated duality gap may not provide an accurate quality measure. This paper presents a new approach for quantifying the quality of the CH price by establishing an upper bound on the optimal dual value. The proposed approach uses Surrogate Lagrangian Relaxation (SLR) to efficiently obtain near-optimal CH prices, while the upper bound decreases rapidly due to the convergence of SLR. Testing results on the IEEE 118-bus system demonstrate that the novel quality measure is more accurate than the measure provided by a feasible cost, indicating the high quality of the upper bound and the efficiency of SLR.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.