Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 12 Apr 2023]
Title:Fast emulation of cosmological density fields based on dimensionality reduction and supervised machine-learning
View PDFAbstract:N-body simulations are the most powerful method to study the non-linear evolution of large-scale structure. However, they require large amounts of computational resources, making unfeasible their direct adoption in scenarios that require broad explorations of parameter spaces. In this work, we show that it is possible to perform fast dark matter density field emulations with competitive accuracy using simple machine-learning approaches. We build an emulator based on dimensionality reduction and machine learning regression combining simple Principal Component Analysis and supervised learning methods. For the estimations with a single free parameter, we train on the dark matter density parameter, $\Omega_m$, while for emulations with two free parameters, we train on a range of $\Omega_m$ and redshift. The method first adopts a projection of a grid of simulations on a given basis; then, a machine learning regression is trained on this projected grid. Finally, new density cubes for different cosmological parameters can be estimated without relying directly on new N-body simulations by predicting and de-projecting the basis coefficients. We show that the proposed emulator can generate density cubes at non-linear cosmological scales with density distributions within a few percent compared to the corresponding N-body simulations. The method enables gains of three orders of magnitude in CPU run times compared to performing a full N-body simulation while reproducing the power spectrum and bispectrum within $\sim 1\%$ and $\sim 3\%$, respectively, for the single free parameter emulation and $\sim 5\%$ and $\sim 15\%$ for two free parameters. This can significantly accelerate the generation of density cubes for a wide variety of cosmological models, opening the doors to previously unfeasible applications, such as parameter and model inferences at full survey scales as the ESA/NASA Euclid mission.
Submission history
From: Miguel Conceição Mr. [view email][v1] Wed, 12 Apr 2023 18:29:26 UTC (1,451 KB)
Current browse context:
astro-ph.CO
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.