Computer Science > Machine Learning
[Submitted on 11 Apr 2023]
Title:Hyperbolic Geometric Graph Representation Learning for Hierarchy-imbalance Node Classification
View PDFAbstract:Learning unbiased node representations for imbalanced samples in the graph has become a more remarkable and important topic. For the graph, a significant challenge is that the topological properties of the nodes (e.g., locations, roles) are unbalanced (topology-imbalance), other than the number of training labeled nodes (quantity-imbalance). Existing studies on topology-imbalance focus on the location or the local neighborhood structure of nodes, ignoring the global underlying hierarchical properties of the graph, i.e., hierarchy. In the real-world scenario, the hierarchical structure of graph data reveals important topological properties of graphs and is relevant to a wide range of applications. We find that training labeled nodes with different hierarchical properties have a significant impact on the node classification tasks and confirm it in our experiments. It is well known that hyperbolic geometry has a unique advantage in representing the hierarchical structure of graphs. Therefore, we attempt to explore the hierarchy-imbalance issue for node classification of graph neural networks with a novelty perspective of hyperbolic geometry, including its characteristics and causes. Then, we propose a novel hyperbolic geometric hierarchy-imbalance learning framework, named HyperIMBA, to alleviate the hierarchy-imbalance issue caused by uneven hierarchy-levels and cross-hierarchy connectivity patterns of labeled this http URL experimental results demonstrate the superior effectiveness of HyperIMBA for hierarchy-imbalance node classification tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.