Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Apr 2023]
Title:FashionSAP: Symbols and Attributes Prompt for Fine-grained Fashion Vision-Language Pre-training
View PDFAbstract:Fashion vision-language pre-training models have shown efficacy for a wide range of downstream tasks. However, general vision-language pre-training models pay less attention to fine-grained domain features, while these features are important in distinguishing the specific domain tasks from general tasks. We propose a method for fine-grained fashion vision-language pre-training based on fashion Symbols and Attributes Prompt (FashionSAP) to model fine-grained multi-modalities fashion attributes and characteristics. Firstly, we propose the fashion symbols, a novel abstract fashion concept layer, to represent different fashion items and to generalize various kinds of fine-grained fashion features, making modelling fine-grained attributes more effective. Secondly, the attributes prompt method is proposed to make the model learn specific attributes of fashion items explicitly. We design proper prompt templates according to the format of fashion data. Comprehensive experiments are conducted on two public fashion benchmarks, i.e., FashionGen and FashionIQ, and FashionSAP gets SOTA performances for four popular fashion tasks. The ablation study also shows the proposed abstract fashion symbols, and the attribute prompt method enables the model to acquire fine-grained semantics in the fashion domain effectively. The obvious performance gains from FashionSAP provide a new baseline for future fashion task research.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.