Computer Science > Artificial Intelligence
[Submitted on 11 Apr 2023 (v1), last revised 8 Jul 2024 (this version, v2)]
Title:Optimizing Data-driven Causal Discovery Using Knowledge-guided Search
View PDF HTML (experimental)Abstract:Learning causal relationships solely from observational data often fails to reveal the underlying causal mechanisms due to the vast search space of possible causal graphs, which can grow exponentially, especially for greedy algorithms using score-based approaches. Leveraging prior causal information, such as the presence or absence of causal edges, can help restrict and guide the score-based discovery process, leading to a more accurate search. In the healthcare domain, prior knowledge is abundant from sources like medical journals, electronic health records (EHRs), and clinical intervention outcomes. This study introduces a knowledge-guided causal structure search (KGS) approach that utilizes observational data and structural priors (such as causal edges) as constraints to learn the causal graph. KGS leverages prior edge information between variables, including the presence of a directed edge, the absence of an edge, and the presence of an undirected edge. We extensively evaluate KGS in multiple settings using synthetic and benchmark real-world datasets, as well as in a real-life healthcare application related to oxygen therapy treatment. To obtain causal priors, we use GPT-4 to retrieve relevant literature information. Our results show that structural priors of any type and amount enhance the search process, improving performance and optimizing causal discovery. This guided strategy ensures that the discovered edges align with established causal knowledge, enhancing the trustworthiness of findings while expediting the search process. It also enables a more focused exploration of causal mechanisms, potentially leading to more effective and personalized healthcare solutions.
Submission history
From: Uzma Hasan [view email][v1] Tue, 11 Apr 2023 20:56:33 UTC (1,188 KB)
[v2] Mon, 8 Jul 2024 14:54:48 UTC (1,076 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.